Quasi-orthogonal Polynomials, Quadrature, and Interpolation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Polynomials and Quadrature

Various concepts of orthogonality on the real line are reviewed that arise in connection with quadrature rules. Orthogonality relative to a positive measure and Gauss-type quadrature rules are classical. More recent types of orthogonality include orthogonality relative to a sign-variable measure, which arises in connection with Gauss-Kronrod quadrature, and power (or implicit) orthogonality enc...

متن کامل

Quasi-Exactly Solvable Systems and Orthogonal Polynomials

This paper shows that there is a correspondence between quasi-exactly solvable models in quantum mechanics and sets of orthogonal polynomials {Pn}. The quantum-mechanical wave function is the generating function for the Pn(E), which are polynomials in the energy E. The condition of quasi-exact solvability is reflected in the vanishing of the norm of all polynomials whose index n exceeds a criti...

متن کامل

Construction of σ-orthogonal Polynomials and Gaussian Quadrature Formulas

Let dα be a measure on R and let σ = (m1,m2, ..., mn), where mk ≥ 1, k = 1, 2, ..., n, are arbitrary real numbers. A polynomial ωn(x) := (x − x1)(x − x2)...(x − xn) with x1 ≤ x2 ≤ ... ≤ xn is said to be the n-th σ-orthogonal polynomial with respect to dα if the vector of zeros (x1, x2, ..., xn) is a solution of the extremal problem ∫

متن کامل

Zeros of Quasi-Orthogonal Jacobi Polynomials

We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α > −1, −2 < β < −1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P (α,β) n and P (α,β+2) n are interlacing, holds when the parameters α and β are in the range α > −1 and −2 < β < −1. We prove that t...

متن کامل

Asymptotic Behaviour of Quasi-orthogonal Polynomials

We obtain explicit upper and lower bounds on the norms of the spectral projections of the non-self-adjoint harmonic oscillator. Some of our results apply to a variety of other families of orthogonal polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1994

ISSN: 0022-247X

DOI: 10.1006/jmaa.1994.1121